목록Machine Learning (23)
Deep Learning study
오늘 볼 것은 GAN에서 나타나는 mode collapse에대한 문제제기와 이 현상이 생기지 않도록 하는 새로운 방법을 소개하는 논문입니다. 이미지 합성(image synthesis)라하면 가장 먼저 떠오르는 것은 GAN입니다. 하지만 GAN framwork를 사용하는 모델들은 각 input image에 따른 그럴듯한 이미지(plausible image)를 단지 하나, 또는 기껏해야 고정된 수 만큼의 output을 만을 가지게 됩니다. 이논문에서는 semantic segmentation map들로부터 생성하는 이미지에 중점을 두고 같은 semantic layout에 대해서 다양한 형태를 가진 임의의 수 만큼의 이미지를 생성해내는 새로운 방법을 소개합니다. Introduction 현재까지 이미지 생성에 대..
최근 generative network들이 많은 발전을 이루었음에도, 그 이미지 생성에대한 매커니즘은 여전히 잘 알려지지 않았습니다. 그래서 이 논문에서는 explorative sampling algorithm to analyze generation mechanism of DGNNs 을 소개합니다. 이 방법으로 한 쿼리로 부터 동일한 특징을 가진 sample들을 효율적으로 얻을 수 있다고 합니다. Instoduction 일반적으로, 생성모델은 latent space의 한 점(point)을 data space의 한 샘플(sample)에 매핑(map) 합니다. 즉 데이터 인스턴스 들은 latent vector로 임베딩(embedded)되는 것이죠. 그런 latent space 는 모델의 구조로부터 나온 경계..
오늘은 super resolrution GAN 에 대해서 알아보도록 합시다 ! SRGAN은 딱히 어렵다거나 복잡한 것은 없지만, image super resolution에 관심이 좀 있던터라 쟁여뒀던 논문을 꺼내어 읽어보았습니다. ㅋㅋ 그럼 먼저 super resolution 이 뭔지부터 알아봅시다. 물론 모르는 사람은 없을테지만, 위의 링크에서도 볼 수 있듯이 이미지의 해상도를 높여주는 작업입니다. 즉 저해상도 이미지를 고해상도로 바꾸는 것이죠 ! 여기서 소개할 super resolution 방법은 GAN을 이용한 방법입니다. Introduction Super Resolution(SR)은 computer vision분야에서 많은 주목을 받고있습니다. 많은 SR문제를 해결하고자하는 노력들이 있었지만, 복..
오늘 살펴볼 논문은 Unrolled GAN입니다. 왠지 읽어야되는 논문 순서가 엄청 뒤죽박죽 된 느낌이지만 ... 그냥 손에 잡히는거 읽는게 잘 되는것 같은 느낌입니다. 여튼 최근에 훈련도있고 일과도 조금 많아져서 오랜만에 정리를하게 되었습니다. ( 전역 언제하나.... ) 그럼이제 본론으로 들어가도록 합시다.. Introduction GAN에서 파생된 눈문들은 대체로 GAN이 가지고있는 문제점들을 개선할 수있는 방안을 제시해주는 것들이 대다수입니다.(내 느낌인가..) 역시 Unrolled GAN도 마찬가지로 몇 가지 문제점들을 개선했다는 내용을 담아내고 있습니다. mode collapse 문제로 주로 generator가 계속 하나의 sample만 생성해내는 현상 generator와 discriminat..
오늘의 논문은 memoryGAN이다. 서울대학교 김건희 교수님연구실의 논문인데 정말 음.. 어렵고, 어려운만큼 잘 이해해보려고 노력했던 논문이다. 논문에 들어가기에 앞서, 읽기전에 이 글을 먼저 읽거나 해당 논문을 읽고 이것을 읽으면 많은 도움이 될 것이다. GAN에관한 논문에는 항상 문제점을 가지고 시작한다. 여기서도 마찬가지로 GAN의 학습에있어서의 두가지 이슈를 가지고 시작하게 된다. GAN은 다수의 클래스나 데이터의 군집(cluster)를 임베딩하기위해서 continuous latent distribution만을 사용하기 때문에 서로다른 클래스들 사이의 구조적인 불연속을 다룰 수 없다. GAN의 discriminator는 과거에 generator가 생성해낸 sample들을 쉽게 잊어버린다. 이러한..
오늘은 memory network에 관한 논문을 정리해 보려한다. neural network는 매우 좋은 성능을 가져오지만, 학습기키기가 까다롭다는 점이있다. 그에대한 예시로, 학습할때 필요한 방대한 양의 dataset과 학습을 한 data에 대한 것을 잘 잊어버리는 것 이다. 그래서 논문에서 다양한 neural network에 사용 될 life-long memory module을 소개한다. 이러한 memory 구조를 가지게 됨 으로써 기억능력에대한 향상, 그리고 one-shot learning(각 class별로 하나 또는 적은 training sample로 부터 학습을 하는 것)이 가능하다고 말한다. introduction 여기서 중점적으로 소개할 내용은 다양한 neural network들에서 one-..
오늘은 infoGAN에 대해서 정리해보도록 하자. InfoGAN은 기존의 GAN에 정보(information) 이론을 가지고 확장시킨다. 기존의 GAN모델이 entangled(얽혀있는) representation들을 학습해왔는데, InfoGAN에서는 disentangled(엉킨것이 풀어진) representation들을 학습하는 방법을 제시한다. 이게 무슨 말 이냐면 , 일반적인 GAN은 input에서 noise에 대한 아무런 제약이 없으므로 noise에 대한 정보를 알 수 없다. 즉, noise input 에서 어느부분이 어떤 representation을 조절하는지를 알기 힘들다. 하지만 이것을 disentangle하게 , 다시말하면 해석가능하게(어느부분이 의미를 가지도록) 만들어 핵심적인 repres..
오늘은 DCGAN에 대해서 알아보도록 하자 . 이 논문은 읽는데 딱히 어려웠던 점은 없고 생각보다 쉽게 읽어 내려갈 수 있었다. 새로운 이론이나 그에따른 증명 보다는 네트워크의 구조적 측면이나 , 방대한 실험과 경험을 통한 결과물들을 보여주기 때문이다. 이 논문에서 소개할 것들에대해서 알아보자. 1. DCGAN이라는 Convolutional GAN을 이용하여 대부분의 상황에서 안정적인 학습을 가능하게 만들었다. 2. 학습된 discriminator를 이미지 분류에 사용했을때 , 다른 unsupervised 알고리즘과 견줄만한 성능을 보여주었다. 3. GAN이 학습한 filter들을 시각적으로 보여주고, 특정한 filter들이 특정한 object들을 표현하는것을 학습하는것을 보여준다. 4. generato..