목록딥러닝 (18)
Deep Learning study
오늘 볼 것은 GAN에서 나타나는 mode collapse에대한 문제제기와 이 현상이 생기지 않도록 하는 새로운 방법을 소개하는 논문입니다. 이미지 합성(image synthesis)라하면 가장 먼저 떠오르는 것은 GAN입니다. 하지만 GAN framwork를 사용하는 모델들은 각 input image에 따른 그럴듯한 이미지(plausible image)를 단지 하나, 또는 기껏해야 고정된 수 만큼의 output을 만을 가지게 됩니다. 이논문에서는 semantic segmentation map들로부터 생성하는 이미지에 중점을 두고 같은 semantic layout에 대해서 다양한 형태를 가진 임의의 수 만큼의 이미지를 생성해내는 새로운 방법을 소개합니다. Introduction 현재까지 이미지 생성에 대..
오늘 볼 논문들은 두가지 입니다 ! 사실상 이전의 글을 보셨다면 지금 보는 논문들은 크게 어려울것 없습니다. 그런의미에서 간단하게만 살펴봅시다. Inception GoogLeNet이라고 알려진 유명한 논문입니다. 먼저 모델을 deep하게 만들수록 모델의 표현능력 또는 수용력이 증가함으로써 성능이 올라간다는것은 어떻게보면 실험적으로 잘 알려진 사실입니다. 그렇지만 단순히 깊게 만드는데에는 한계가 있습니다. 모델의 사이즈가 커진다는 것은 당연하게도 parameter의 수가 커지는것을 의미합니다. 이것은 한정된 labeled data를 가질 수 밖에 없는 우리에게 overfitting이 일어나게 만듭니다. 우리가 가진 계산(computation)능력과 메모리등의 자원은 항상 제한적입니다. 다시말해 우리는 한정..
오늘은 DCGAN에 대해서 알아보도록 하자 . 이 논문은 읽는데 딱히 어려웠던 점은 없고 생각보다 쉽게 읽어 내려갈 수 있었다. 새로운 이론이나 그에따른 증명 보다는 네트워크의 구조적 측면이나 , 방대한 실험과 경험을 통한 결과물들을 보여주기 때문이다. 이 논문에서 소개할 것들에대해서 알아보자. 1. DCGAN이라는 Convolutional GAN을 이용하여 대부분의 상황에서 안정적인 학습을 가능하게 만들었다. 2. 학습된 discriminator를 이미지 분류에 사용했을때 , 다른 unsupervised 알고리즘과 견줄만한 성능을 보여주었다. 3. GAN이 학습한 filter들을 시각적으로 보여주고, 특정한 filter들이 특정한 object들을 표현하는것을 학습하는것을 보여준다. 4. generato..
오늘은 Cycle GAN에 대해서 알아보자 ! 보통 image-to-image translation모델을 학습시킬때 training data 로 input image와 output image의 pair를 사용하게 된다. 예를들면 모네의 사진을 실제 사진처럼 바꾸는 모델을 만들려고한다면, 모네의 그림과 모네의 그림의 배경이 되는 풍경 사진이 pair로 존재해야한다. 하지만 translation에서, 대다수의 경우에는 짝이 지어진 training data를 구하기는 매우 힘들다. 그래서 이 논문에서 paired example 없이 source domain(X)에서 target domain(Y)으로 image를 변환(translate)하는 방법을 소개한다. 즉 이논문의 목표는 G(X)의 image distri..
인공지능 수업의 프로젝트로.. Face aging 모델을 만들어 보려 한다. 논문이 사실 특별한 내용이 있는것은 아니고 생각보다 간단하다. 일단 본론으로 들어가기 전에 conditional GAN부터 조금 알아보자. Conditional Generative Adversarial Nets 원래 GAN은 임의의 노이즈를 input으로 주면 generator도 역시 임의의 값을 생성해 낸다. 즉, 어떠한 output을 가져올지는 모른다는 말이다. 그래서 이 논문에서 하고자 하는것은, 노이즈와 함께 임의의 condition을 같이 주어 output을 원하는 방향으로 뽑아내보자 하는것이다. 방법은 간단하다. input 에 condition에 해당하는 y를 concat하여 Discriminator 와 Generat..
이번에 정리해 볼 논문은 FCN이다. image segmentation에서 기초가되는 논문.? 이라고 생각돼서 한 번 정리를 해보려고 한다. 여기서 이야기하는 방법론은 단순하면서 간단하다. FCN에서는 기존의 classification에 사용되던 모델들을 이용하여 tranfer learning을 하게 된다. 하지만 기존의 classification의 모델들은 class 분류를 위해 네트워크의 마지막엔 항상 Fully connected layer(이하 Fc layer)가 삽입되게 되는데 이는 image segmentation에는 적합하지 않다. 왜냐하면 Fc layer를 사용하기 위해서는 고정된 크기의 input만을 받아야하며, 1차원적인 정보만을 가지고 있기 때문에 원하는 2차원적인 정보(위치정보 등,,..
최근에( 여기서 최근은 이 논문의 저자가 논문을 썼을 당시를 말한다..)보여지는 여러 결과들이 network의 깊이가 매우 중요하다는 것이 드러나고 있다. 그 예로 ImageNet dataset challenge의 결과를 보면, 좋은 성과를 낸 것들은 모두 very deep한 모델들 이였다. 하지만 과연 network의 깊이만 깊어진다고(layer 들이 많아짐) 더 좋은 network가 될까? 물론 그것은 아니다. 가장 흔히 발생하는 vanishing/exploding gradients의 문제가 있다. 하지만 이러한 문제들은 Batch Norm 과 같은 방법으로 많은 부분 해결이 가능하다. 또한 normalized initialization, intermediate normaliation layer를 사..
내가 이 책을 알게된건 아마도 .. facebook을 보던중 tensorflow kr 그룹의 게시글에서 우연찮게 본것같다. 가장 먼저 눈에 들어오는것은 Andrew ag이였다 . 이 분야에서는 너무나 유명하신 분이기 때문에 주저않고 꼭 읽어봐야겠다 라고 생각했다. Coursera에서 머신러닝 강의도 봤던터라 조금 친숙한 감도 있었던거 같다 ㅋㅋ 여튼 , 이 책은 ai 개발에 있어서의 기술적인 방법들에대해 서술하고있다 . 예를들면 데이터를 어떻게 분류할것인가 , 어떤데이터를 이용해야하는가 등의 테크닉들을 알려주고있다 . 음 .. 내가 이 책을 제대로 써먹으려면 내년 6월 전역한 후겠지만 , 많은 ai개발자들에게 도움이 될만한 책인것은 분명한것 같다 . 책의 마지막에는 ‘슈퍼히어로가 되는것보단 슈퍼히어로..