목록L2 regularization (1)
Deep Learning study
Regularization과 Normalization
Deep learning 논문들을 읽다보면 정말 자주나오는 단어입니다. 다소 헷갈릴 수있는 개념인 Normalization과 Regularization에 대해서 알아보도록 합시다. Regularization 이 방법은 모델에 제약(penalty)을 주는 것 입니다. 쉽게 말하자면, perfect fit 을 포기함으로써(trainging accuracy를 낮춤으로써) potential fit을 증가시키고자(testing accuracy를 높이고자) 하는 것 입니다. 위의 오른쪽 그래프를 보면 모든 traing data에대해서는 완벽하게 fitting되어 있습니다. 하지만 이 모델은 일반적으로 적용했을때 옳바른 output을 내지 못하겠죠. 따라서 너무 높은 complexity를 피하기 위해서 쓰는 방법이 ..
AI/Deep learning 을 위한 지식
2019. 8. 24. 11:28