Deep Learning study
[pytorch] RNN seq2seq 를 이용한 translater 본문
반응형
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 | # coding: utf-8 # In[1]: from __future__ import unicode_literals, print_function, division from io import open import unicodedata import string import re import random import torch import torch.nn as nn from torch.autograd import Variable from torch import optim import torch.nn.functional as F use_cuda = torch.cuda.is_available() # In[2]: #make dict SOS_token = 0 EOS_token = 1 class Lang : def __init__(self, name): self.name = name self.word2index = {} self.index2word = {} self.word2count = {0: "SOS", 1: "EOS"} self.n_words = 2 #count SOS and EOS def addSentence(self, sentence): for word in sentence.split(' '): self.addWord(word) def addWord(self, word): if word not in self.word2index: self.word2index[word] = self.n_words self.word2count[word] = 1 self.index2word[self.n_words] = word self.n_words += 1 else: self.word2count[word] += 1 # In[3]: #Turn a Unicode stirng to plain ASCII def unicodeToAscii(s): return ''.join( c for c in unicodedata.normalize('NFD', s) if unicodedata.category(c) != 'Mn' ) # Lowercase, trim, and remove non-letter characters def normalizeString(s): s = unicodeToAscii(s.lower().strip()) s = re.sub(r"([.!?])", r" \1", s) s = re.sub(r"[^a-zA-Z.!?]+", r" ", s) return s # In[4]: def readLangs(lang1, lang2, reverse=False): print("Reading lines...") lines = open('../data/fra-eng/%s-%s.txt' % (lang1 , lang2), encoding='utf-8').read().strip().split('\n') print(lines) pairs = [[normalizeString(s) for s in l.split('\t')] for l in lines] if reverse: pairs = [list(reversed(p)) for p in pairs] input_lang = Lang(lang2) output_lang = Lang(lang1) else: input_lang = Lang(lang1) output_lang = Lang(lang2) return input_lang, output_lang, pairs # In[5]: MAX_LENGTH = 10 eng_prefixes = ( "i am ", "i m ", "he is", "he s ", "she is", "she s", "you are", "you re ", "we are", "we re ", "they are", "they re " ) # def filterPair(p): # return len(p[0].split(' ')) < MAX_LENGTH and \ # len(p[1].split(' ')) < MAX_LENGTH and \ # p[1].startswith(eng_prefixes) # def filterPairs(pairs): # return [pair for pair in pairs if filterPair(pair)] def filterPair(p): return len(p[0].split(' ')) < MAX_LENGTH and len(p[1].split(' ')) < MAX_LENGTH and p[1].startswith(eng_prefixes) def filterPairs(pairs): return [pair for pair in pairs if filterPair(pair)] # In[6]: def prepareData(lang1, lang2, reverse=False): input_lang, output_lang, pairs = readLangs(lang1, lang2, reverse) print("Read %s sentence pairs" % len(pairs)) pairs = filterPairs(pairs) print("Trimmed to %s sentence pairs" % len(pairs)) print("Counting words...") for pair in pairs: input_lang.addSentence(pair[0]) output_lang.addSentence(pair[1]) print("Counted words:") print(input_lang.name, input_lang.n_words) print(output_lang.name, output_lang.n_words) return input_lang, output_lang, pairs input_lang, output_lang, pairs = prepareData('eng', 'fra', True) print(random.choice(pairs)) # In[7]: class EncoderRNN(nn.Module): def __init__(self, input_size, hidden_size): super(EncoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(input_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) def forward(self, input, hidden): embedded = self.embedding(input).view(1, 1, -1) output = embedded output, hidden = self.gru(output, hidden) return output, hidden def initHidden(self): reuslt = Variable(torch.zeros(1,1, self.hidden_size)) if use_cuda: return result.cuda() else: return result # In[8]: class DecoderRNN(nn.Module): def __init__(self, hidden_size, output_size): super(DecoderRNN, self).__init__() self.hidden_size = hidden_size self.embedding = nn.Embedding(output_size, hidden_size) self.gru = nn.GRU(hidden_size, hidden_size) self.out = nn.Linear(hidden_size, output_size) self.softmax = nn.LogSoftmax(dim=1) def forward(self, input, hidden): output = self.embedding(input).view(1,1,-1) output = F.relu(output) output, hidden = self.gru(output, hidden) output = self.softmax(self.out(output[0])) return output, hidden def initHidden(self): result = Variable(torch.zeros(1,1,self.hidden_size)) if use_cuda: return result.cuda() else: return result # In[9]: class AttnDecoderRNN(nn.Module): def __init__(self, hidden_size, output_size, dropout_p = 0.1, max_length=MAX_LENGTH): super(AttnDecoderRNN, self).__init__() self.hidden_size = hidden_size self.output_size = output_size self.dropout_p = dropout_p self.max_length = max_length self.embedding = nn.Embedding(self.output_size, self.hidden_size) self.attn = nn.Linear(self.hidden_size * 2 , self.max_length) self.attn_combine = nn.Linear(self.hidden_size*2, self.hidden_size) self.dropout = nn.Dropout(self.dropout_p) self.gru = nn.GRU(self.hidden_size, self.hidden_size) self.out = nn.Linear(self.hidden_size, self.output_size) def forward(self, input, hidden, encoder_outputs): embedded = self.embedding(output).view(1,1,-1) embedded = self.dropout(embedded) attn_weights = F.softmax(self.attn(torch.cat((embedded[0], hidden[0]) , 1 )) , dim=1) attn_applied = torch.bmm(attn_weights.unsqueeze(0), encoder_outputs.unsqueeze(0)) output = torch.cat((embedded[0], attn_applied[0]), 1) output = self.attn_combine(output).unsqueeze(0) output = F.relu(output) output, hidden = self.gru(output, hidden) output = F.log_softmax(self.out(output[0]), dim=1) return output, hidden, attn_weights def initHidden(self): result = Variable(torch.zeros(1,1,self.hidden_size)) if use_cuda: return result.cuda() else: return result # In[10]: ## preparing Training data def indexesFromSentence(lang, sentence): return [lang.word2index[word] for word in sentence.split(' ')] def variableFromSentence(lang, sentence): indexes = indexesFromSentence(lang, sentence) indexes.append(EOS_token) result = Variable(torch.LongTensor(indexes).view(-1,1)) if use_cuda: return result.cuda() else: return result def variablesFromPair(pair): input_variable = variableFromSentence(input_lang, pair[0]) target_variable = variableFromSentence(output_lang, pair[1]) return (input_variable, target_variable) # In[12]: ## training teacher_forcing_ratio = 0.5 def train(input_variable, target_variable, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion, max_length=MAX_LENGTH): encoder_hidden = encoder.initHidden() encoder_optimizer.zero_grad() decoder_optimizer.zero_grad() input_length = input_variable.size()[0] target_length = target_variable.size()[0] encoder_outputs = Variable(torch.zeros(max_length, encoder.hidden_size)) encoder_outputs = encoder_outputs.cuda() if use_cuda else encoder_outputs loss=0 for ei in range(input_length): encoder_output, encoder_hidden = encoder( input_variable[ei], encoder_hidden) encoder_outputs[ei] = encoder_output[0][0] decoder_input = Variable(torch.LongTensor([[SOS_token]])) decoder_input = decoder_input.cuda() if use_cuda else decoder_input decoder_hidden = encoder_hidden use_teacher_forcing = True if random.random() < teacher_forcing_racio else False if use_teacher_forcing: for di in range(target_length): decoder_output, decoder_hidden, decoder_attention = decoder(decoder_input, decoder_hidden, encoder_outputs) topv, topi = decoder_input.cuda() if use_cudaelse else decoder_input loss += criterion(decoder_output, target_variable[di]) if ni == EOS_token: break loss.backward() encoder_optimizer.step() decoder_optimizer.step() return loss.data[0] / target_length # In[1]: import time import math def asMinutes(s): m = math.floor(s / 60) s -= m * 60 return '%dm %ds' % (m, s) def timeSince(since, percent): now = time.time() s = now - since es = s / (percent) rs = es - s return '%s (- %s)' % (asMinutes(s), asMinutes(rs)) # In[2]: def trainIters(encoder, decoder, n_iters, print_every=1000, plot_every=100, learning_rate=0.01): start = time.time() plot_losses = [] print_loss_total = 0 # Reset every print_every plot_loss_total = 0 # Reset every plot_every encoder_optimizer = optim.SGD(encoder.parameters(), lr=learning_rate) decoder_optimizer = optim.SGD(decoder.parameters(), lr=learning_rate) training_pairs = [variablesFromPair(random.choice(pairs)) for i in range(n_iters)] criterion = nn.NLLLoss() for iter in range(1, n_iters + 1): training_pair = training_pairs[iter - 1] input_variable = training_pair[0] target_variable = training_pair[1] loss = train(input_variable, target_variable, encoder, decoder, encoder_optimizer, decoder_optimizer, criterion) print_loss_total += loss plot_loss_total += loss if iter % print_every == 0: print_loss_avg = print_loss_total / print_every print_loss_total = 0 print('%s (%d %d%%) %.4f' % (timeSince(start, iter / n_iters), iter, iter / n_iters * 100, print_loss_avg)) if iter % plot_every == 0: plot_loss_avg = plot_loss_total / plot_every plot_losses.append(plot_loss_avg) plot_loss_total = 0 showPlot(plot_losses) # In[3]: import matplotlib.pyplot as plt import matplotlib.ticker as ticker import numpy as np def showPlot(points): plt.figure() fig, ax = plt.subplots() # this locator puts ticks at regular intervals loc = ticker.MultipleLocator(base=0.2) ax.yaxis.set_major_locator(loc) plt.plot(points) # In[4]: def evaluate(encoder, decoder, sentence, max_length=MAX_LENGTH): input_variable = variableFromSentence(input_lang, sentence) input_length = input_variable.size()[0] encoder_hidden = encoder.initHidden() encoder_outputs = Variable(torch.zeros(max_length, encoder.hidden_size)) encoder_outputs = encoder_outputs.cuda() if use_cuda else encoder_outputs for ei in range(input_length): encoder_output, encoder_hidden = encoder(input_variable[ei], encoder_hidden) encoder_outputs[ei] = encoder_outputs[ei] + encoder_output[0][0] decoder_input = Variable(torch.LongTensor([[SOS_token]])) # SOS decoder_input = decoder_input.cuda() if use_cuda else decoder_input decoder_hidden = encoder_hidden decoded_words = [] decoder_attentions = torch.zeros(max_length, max_length) for di in range(max_length): decoder_output, decoder_hidden, decoder_attention = decoder( decoder_input, decoder_hidden, encoder_outputs) decoder_attentions[di] = decoder_attention.data topv, topi = decoder_output.data.topk(1) ni = topi[0][0] if ni == EOS_token: decoded_words.append('<EOS>') break else: decoded_words.append(output_lang.index2word[ni]) decoder_input = Variable(torch.LongTensor([[ni]])) decoder_input = decoder_input.cuda() if use_cuda else decoder_input return decoded_words, decoder_attentions[:di + 1] # In[ ]: def evaluateRandomly(encoder, decoder, n=10): for i in range(n): pair = random.choice(pairs) print('>', pair[0]) print('=', pair[1]) output_words, attentions = evaluate(encoder, decoder, pair[0]) output_sentence = ' '.join(output_words) print('<', output_sentence) print('') hidden_size = 256 encoder1 = EncoderRNN(input_lang.n_words, hidden_size) attn_decoder1 = AttnDecoderRNN(hidden_size, output_lang.n_words, dropout_p=0.1) if use_cuda: encoder1 = encoder1.cuda() attn_decoder1 = attn_decoder1.cuda() trainIters(encoder1, attn_decoder1, 75000, print_every=5000) evaluateRandomly(encoder1, attn_decoder1) | cs |
pytorch를 이용해 seq2seq모델을 만들어 보았다 !
코드를 분석해가며 하나하나 해보는데 너무 오래걸렸다. 가장어려웠던 부분은 데이터를 전처리 해줘야 하는부분이 너무 많았다. 이미지와는 다르게 따로 해줘야할 작업들이 많다.
좀더 공부를 한후에 다시 결과도 올리고, 코드 분석을 다시 해야겠다.
반응형
'AI > Pytorch' 카테고리의 다른 글
[Pytorch] GAN 을 이용한 Black & White image Colorization 최종 (0) | 2018.04.06 |
---|---|
[Pytorch] GAN(Generative Adversarial Network)를 이용한 흑백 이미지 colorization(미완성..) (0) | 2018.04.05 |
[pytorch] RNN seq2seq 간단한 대화모델 (8) | 2018.02.09 |
[Pytorch] kaggle cat vs dog 학습시키기 with Resnet (0) | 2018.01.24 |
[Pytorch] kaggle cat&dog CNN 으로 분류하기 (0) | 2018.01.24 |
Comments